Ayperon Semi-Leptonic Decays

Ashkan Alavi-Harati

University of Wisconsin-Madison

September 27, 1999

Outline

- **HSD's in Cabibbo Model.**
- Precision Measurements of Lambda Beta Decay.
- Negative Sigma Beta Decay, FNAL(E715).
 CERN(WA2) results: A Cabibbo fit.
 Status of V_{us} in HSD Cabibbo fits.
 Neutral Cascade Beta Decay, KTEV.
 Conclusion.

Hyperon Semi-Leptonic Decays

- Cabibbo Model explains HSD based on flavor SU(3) symmetry.
- Three free parameters θ_c , F and D in the model.
- Excellent prediction power.
- Experimental data are in good agreement with the model.
- SU(3) is a not a perfect symmetry and the symmetry breaking effects are expected to be seen in HSD.
- Several models try to explain the deviations from the experiment with various symmetry breaking mechanisms.

Allowed Baryon Beta Decays

•High flux polarized hyperon beams are needed for precision experiments.

•Small Branching Ratios (10⁻³ - 10⁻⁵), hence limited statistics.

•High Background level, especially the dominant two-body decay exists for some HSD's:

$$A \rightarrow B \pi^-$$

Hyperon Semi-Leptonic Decay Rates

Decay	BR	Events	two-body
$\Lambda \rightarrow p\bar{e} \nu$	8.32×10^{-4}	20 k	Y
$\Sigma \rightarrow ne^{-\nu}$	1.02×10^{-3}	4.1 k	Y
$\Sigma \rightarrow \Lambda e^{-} \nu$	5.73×10^{-5}	1.8 k	Ν
$\Sigma^+ \rightarrow \Lambda e^+ \nu$	2.0×10^{-5}	21	Ν
$\Xi^- \rightarrow \Lambda e^- v$	5.63×10^{-4}	2868	Ν
$\Xi^{-} \rightarrow \Sigma^{0} e^{-} \nu$	8.7×10^{-5}	154	Ν
$\Xi^0 \rightarrow \Sigma^+ e^- \nu$	2.71×10^{-4}	176	Ν
$\Xi^- \rightarrow \Xi^0 e^- v$	$< 2.3 \times 10^{-3}$	0	Ν

Allowed Hyperon Muonic Decays

Hyperon Muonic Decays

- BranchingDecayRatioEvents $\Sigma^- \rightarrow n\mu^- v$ 4.5×10^{-4} 174
- $\Lambda \rightarrow p\mu^{-}\nu \qquad 5.17 \text{x} 10^{-4} \qquad 28$
- $\Xi^{-} \rightarrow \Lambda \mu^{-} \nu$ 3.5x10⁻⁴ 1

Semi-Leptonic Decay of Baryons

$$\begin{split} A(p_A) & \twoheadrightarrow B(p_B) + 1 + \nu \quad , \quad q = p_A - p_B \\ \underline{M} = 2^{1/2} G \langle B | J^{\mu} | A \rangle u_1(\bar{p_1}) \gamma_{\mu} (1 + \gamma_5) v_{\nu}(p_{\nu}) \\ \langle B | J^{\mu} | A \rangle &= u_B^- \{ f_1(q^2) \gamma^{\mu} + \frac{f_2(q^2)}{M} \sigma^{\mu\nu} q_{\nu} + \frac{f_3(q^2)}{M} q^{\mu} \\ g_1(q^2) \gamma^{\mu} \gamma_5 + i \frac{g_2(q^2)}{M} \sigma^{\mu\nu} \gamma_5 q_{\nu} + \frac{g_3(q^2)}{M} \gamma_5 q^{\mu} \} u_A \end{split}$$

- All 6 form factors are real, assuming time reversal invariance.
- f_1 and f_2 can be fixed through the CVC hypothesis.
- $g_2 = 0$ in the SM (no second class currents).
- f_3 and g_3 are suppressed by the mass of the lepton and can be neglected in the case of electrons.
- q^2 dependence of f_1 and g_1 may need be to be considered.

Hyperon Beta Form Factors

Decay	scale	\mathbf{f}_1	g ₁
$n \rightarrow pe v$	\mathbf{V}_{ud}	1	D+F
$\Lambda \rightarrow pe^{-}v$	V _{us}	- √3/2	$-\sqrt{1/6}$ (D +3 F)
$\Sigma \rightarrow ne^{-}v$	V _{us}	-1	D-F
$\Sigma \rightarrow \Lambda e^- \nu$	\mathbf{V}_{ud}	0	$\sqrt{2/3}$ D
$\Sigma^+ \rightarrow \Lambda e^+ \nu$	\mathbf{V}_{ud}	0	$\sqrt{2/3}$ D
$\Xi \rightarrow \Lambda e^- \nu$	V _{us}	$\sqrt{3/2}$	$-\sqrt{1/6}$ (D-3F)
$\Xi^{-} \rightarrow \Xi^{0} e^{-} \nu$	V _{ud}	-1	D-F
$\Xi^0 \rightarrow \Sigma^+ e^- \nu$	V _{us}	1	D+F
$\Xi^{-} \rightarrow \Sigma^0 e^- v$	V _{us}	$\sqrt{1/2}$	$\sqrt{1/2}(\mathbf{D}+\mathbf{F})$

Hyperon Semi-Leptonic Decays

Form factors can be extracted from integrated observables:

- Total decay rate (or Branching Ratio).
- e-v angular correlation in the CM of decaying baryon.
- Polarization of the decay baryon in its own CM for unpolarized beam.
- Asymmetry parameters of the decay products (e, v and decay baryon) for polarized beam.

$$\Lambda \rightarrow p + e^- + \bar{\nu}_e$$

- The first and well studied hyperon beta decay.
- Can be produced with high statistics.
- Good place to search for second-class currents.

Early tests of the Cabibbo Model with polarized Lambda's:

Althoff, et. al. (CERN)
1972
$$\begin{vmatrix} g_1 \\ f_1 \end{vmatrix} = 0.64 \pm 0.6 \quad \text{Measuring } \nu \text{ correlation coef.}$$
Lindquist, et. al. (ANL)
1977
$$\frac{g_1}{f_1} = 0.53_{-0.09}^{+0.11} \quad \text{Measuring all correlation coef.}$$
as well as e- ν correlation.

$$\Lambda \rightarrow p + e^- + \bar{\nu}_e$$

• Precise studies of the decay with hyperon beams:

Wise, et. al. (BNL)
1981
$$\frac{|g_1|}{|f_1|} = 0.734 \pm 0.031$$
 Measuring e-v correlation.

Bourquin, et. al. (CERN)
$$\frac{g_1}{f_1} = 0.70 \pm 0.03$$
 from $\Xi^- \rightarrow \Lambda \pi^-$

Dworkin, et. al. (FNAL) $\frac{g_1}{f_1} = 0.731 \pm 0.013$ Measuring e-v correlation.

• Excellent agreement with Cabibbo prediction.

The only beta decay for which Cabibbo Model predicts a negative g_1/f_1 .

Fits on beta decay data predict a large negative value of electron asymmetry $\alpha_e = -0.51 \pm 0.04$

Previous Σ^- polarized experiments failed to confirm this test.

WA2 (CERN) group favored the negative sign from the shape of the electron spectrum.

E715 (FNAL) measurement collected about 50k events of this decay with a high flux polarized beam from the Tevatron.

$\Sigma^{-} \rightarrow n + e^{-} + \overline{\nu}_{e}$

CERN (WA2) Experiment

•A magnetic channel selected 100 GeV/c negative particles produced in the forward direction by 200 GeV/c protons on BeO.

•A DISC Cerenkov counter identified Σ^- and Ξ^- concurrently.

•Measured BR and form factors for beta decays of Σ , Ξ and Λ :

$$\begin{array}{c} \Lambda \rightarrow pe^{-}\nu \\ \Sigma^{-} \rightarrow ne^{-}\nu \\ \Sigma^{-} \rightarrow \Lambda e^{-}\nu \\ \Xi^{-} \rightarrow \Lambda e^{-}\nu \\ \Xi^{-} \rightarrow \Sigma^{0}e^{-}\nu \end{array}$$

CERN (WA2) Experiment

•Cabibbo fits on these measurements results in: $F = 0.477 \pm 0.012$, $D = 0.756 \pm 0.011$

and $\sin \theta_c = 0.231 \pm 0.003$ (Bourquin et.al. 1983)

•Excellent fit with all measurements from a single experiment, within the error bars.

•Still a good fit when they added the n lifetime measurements.

•However, the measured Cabibbo angle disagrees with the K sector:

 $\sin \theta_{c} = 0.2196 \pm 0.0023$ (PDG98)

CERN (WA2) Experiment: Cabibbo angle controversy

•Some recent attempts incorporate second order SU(3) breaking corrections to WA2 data which gives more consistent values of $|V_{us}|$ with the Kaon sector. (A. Garcia's talk)

•PDG chooses not to use the hyperon values of $|V_{us}|$.

•How reliable the experimental values are?

KTeV Beam

Proton Beam Energy:	800 GeV		
Proton Intensity:	3.0-5.0E12		
Vertical Targeting Angle	-4.8 mrad		
Horizontal Targeting Angle	<0.02mrad		
Beam Size (winter) 0.5mrad x 0.5mrad (summer) 0.7mrad x 0.7mrad			

Target: BeO (30.5 cm long)

4 Sweeping Magnets and

3 Collimators define

two parallel neutral beams.

Only the highest momentum As and Ξ^0 s reach the decay volume of the detector.

The CsI Electromagnetic Calorimeter

3100 blocks of pure CsI Crystals, 50 cm (~ 27 X₀) long. 2232 inner crystals size: 2.5x2.5 cm and the 868 outer ones: 5.0x5.0 cm

Position resolution < 1mm Energy resolution < 1%**for E > 5 GeV** electron/pion rejection of 500:1

Electrons from $K \rightarrow \pi e \nu$

$$\Xi^{0} \rightarrow \Sigma^{+} + e^{-} + \overline{\nabla}_{e}$$
$$\rightarrow \mathbf{p} + \pi^{0}$$

Branching Ratio Measurement

Signal = 626 ± 25 events Background = 60 ± 8 events **B.R** = $(2.54 \pm 0.11 \pm 0.16) \times 10^{-4}$ Stat Sys

KTeV first measured B.R = $(2.71 \pm 0.22 \pm 0.31) \times 10^{-4}$

Theoretical SU(3) predicted B.R = $(2.61 \pm 0.11) \times 10^{-4}$

A typical $\Xi^0 \longrightarrow \Sigma^+ e^- \overline{\nu}_e$ event

KIEV Event Display

$\Xi^0 \rightarrow \Sigma^+ + e^- + \overline{V}_e$

KTeV measurements:

(DPF99) **B.R** = $(2.54 \pm 0.11 \pm 0.16) \times 10^{-4}$

(S. Bright's talk)

$$\frac{g_1}{f_1} = 1.24^{+0.20}_{-0.17} \pm 0.07$$

$$\frac{f_2}{f_1} = 1.9 \pm 1.3 \pm 0.7$$

$$\frac{g_2}{f_1} = -1.4^{+2.2}_{-1.9} \pm 0.5$$

Anti- Cascade Beta Decay

$$\Xi^{0} \rightarrow \Sigma^{+} + \mu^{-} + \overline{\nu}_{\mu}$$
$$\rightarrow p + \pi^{0}$$

Branching Ratio Measurement

- Five Candidate Events in the 90% cut box.
- $\Xi^0 \rightarrow \Sigma^+ + e^- + \overline{\nu}_e$ Used as the normalization mode.

BR =
$$(2.6 + 2.7 + 0.6) \times 10^{-6}$$

Stat Sys

Theoretical S(U3) Prediction:

2.3 x 10⁻⁶

$$\Xi^{0} \longrightarrow \Lambda + \pi^{0}$$
$$\searrow \mathbf{p} + \mathbf{e}^{-} + \overline{\mathbf{v}}_{\mathbf{e}}$$

Same final state as Cascade Beta Decay, but a different decay topology.

4229 +/- 65 Events over about 11% background. Can be used as the flux normalization mode

for Cascade Beta Decay.

Conclusions

36 years after its birth, the Cabibbo Model explains HSD successfully

- Small deviations from the theory should either be resolved by experiments or explained by theory.
- HSD is still an open field to search for SU(3) symmetry
 breaking effects and second-class currents.
- **>>** More precision measurements are needed.