
Messaging and Data integration models are used in Phase I of the MCAS project to connect a set of message-
enabled services into a workflow for efficient refactoring of existing informational portals.

Project goal.
Our goal is to factor out presentation and business analysis logic from available monitoring solutions into a
standalone model supporting common standards in data manipulation and presentation. We have prototyped
several services which rely on common techniques for data and information display aggregation. In particular, we’ve
chosen portlet technology, to compose troubleshooting and metric analysis dashboards, and ESB Mule, to drive the
data-integration model. We have used the portlet JSR128 specification and the JBoss engine for the integration of
displays and Mule ESB to transform external data for consumption by the portlet code.

Mission need
The complexity of Grid workflow activities and of their associated software stacks inevitably involves multiple organizations, ownership, and deployment domains. In this setting, important and common tasks
such as the correlation and display of metrics and debugging information (fundamental ingredients of troubleshooting) are challenged by the informational entropy inherent with independently maintained and
operated software components. Because such an information "pond" is disorganized, it becomes a difficult target for business intelligence analysis i.e. troubleshooting, incident investigation and trend spotting.

Metric Correlation and Analysis Service (MCAS)
Mission: deliver a software solution to help with adaptation, retrieval, correlation, and display of

workflow-driven data and of type-agnostic events, generated by disjoint middleware.

Data integration model
The data integration model relies on Mule ESB for data source access, inter-component message exchange, and data
transformation scheduling. The primary benefit of the Mule ESB integration platform is its ability to manage data and
execution flow in a way that is agnostic to transport or interface. In particular Mule ESB offers:
• Codes to translate or templatise translation of data formats
• Options to manage synchronicity, ranging from fully synchronous to SEDA-based (Stage Event Driven Architecture)
solutions.
• Code that adapts out-of-the-box to different transport protocols (TCP, UDP, SMTP, FTP, JDBC, etc.)

ds(D0ProductionEfficiency)
ec=eff_code; ef=eff_fini;
RRD(

CDEF:ec_adj=ec,0,100,LIMIT
CDEF:ef_adj=ef,0,100,LIMIT
LINE2:ec_adj#FF0000:eff_code(x100)
LINE2:ef_adj#0000FF:eff_fini(x100)

)
imgsize(600,300)

Figure 2 depicts one of the implemented scenarios, which uses data transformations and an RRD processing engine to do
splitting, rescaling, and redrawing of D0SiteEfficiency data.

The data transformation engine is built by setting up independent “models”, which drive the message interactions
between Mule ESB message endpoints. This particular schema is designed to understand a template-like language and has
only one data source (production efficiency) endpoint. The embedded RRD template enables transformations over split
data streams. The result of the transformation, a new document with an image, is sent to a portlet instance, specifically
configured to interact with this data integration model.

Figure 2 . An example of a data integration workflow

Different Data Sources

Content Management
System (CMS)

Portal

P1

P4P3

P2

P
o

rt
al

 U
R

L

Data Integration Layer

Data Access LayerData Transformation Layer

Input
Data

Data
Aggregator

Raw
Data

Aggregated Data

A
gg

re
ga

te
d

D

at
a

Data
Transformation

Rules Engine

HTML->
XML

Text -> XML

DB -> XML

Database
Reader

URL Reader

Graph Reader

Request
Parser

Legends: Control Flow

Data/Information

P1, P2, P3, P4: Portlets

Figure 1. High level view of control and data flow inside the system

Messaging
Message exchange is a clever way to decouple the contexts of two programs. Messaging is a soft pattern which does not
imply a fixed db schema or file format behind. It can encapsulate data transport and synchronicity semantics. Most
importantly, with the help of Mule message enabled infrastructure we can use opaque payloads and do modeling of the
data access and aggregation work flow without the need to set the specifics of the type-structure of the data sources.

Work supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359

Workflow

Summary
The data integration layer defines all URL endpoints that provide content for the display. These endpoints may be as
simple as proxies to existing web pages or hide rules for transforming and aggregating data that is retrieved from
other sources. The purpose of this complexity is to provide data that is not available in contents preferred by the user
interface.

JBoss portal content management system builds composition of independent interface elements – portlets (P1 ,
P2, P3, P4). Each portlet can be independently designed with some unique perspective of the particular system
aspects. The composition of such elements is a dashboard of indicators specifically put together to
comprehensively reflect the state of the entire system.

Each portlet is rendered using information provided by the data integration layer.

The data integration layer accesses a set of data sources and uses a collection of rules to transform and aggregate
the retrieved content. The data integration layer generates a digest content with only those details that are
relevant for rendering the portlet itself.

The result is returned synchronously to a requesting party - portlet or parent data integration rule set.

D0 Production efficiency data
source

RRD processing engine

Model gateway: REST query
to Mule Message convertor

Content Management

Split

Meta
data

Display

Mule message
w/processing
instructions

Splitter

Efficiency : files
produced

Efficiency : exit
code

Mule endpoint

Mule endpoint

Mule endpoint

Mule endpoint

Future work
One of the major obstacles in reusing the results of this work is the complexity of the technologies adopted. To overcome
this, we now focus on understanding common data integration patterns, in order to isolate reusable service components.
The role of these components may be changed for a different data model by rearranging the workflow or by reconfiguring
the parameters of the service.

Transformation pipeline

Andrew Baranovski , Gabriele Garzoglio , Ted Hesselroth, Tanya Levshina , Parag Mhashilkar
{abaranov, garzoglio, tdh, tlevshin, parag}@fnal.gov

Computing Division, Fermilab, Batavia, IL

